您好,欢迎来到深圳市创想激光科技有限公司官方网站!

24*7小时全国服务电话: 0755-89231666
  • 创想激光——非标自动化激光技术设备生产商
产品搜索
当前位置:首页 > 新闻资讯 > 激光文库
激光打标机原理
发布时间:2014-06-24    阅览次数:1811 次  
本世纪最后的伟大发明之一是激光技术!我们来探讨一下激光打标机的原理吧!
激光打标机主要配件就是激光器              
第一章  激光器原理 
 可肯定地说:本世纪最后的伟大发明之一是激光技术。它自一九五八年问世以来,已经逐步地然而是坚定地渗透到了科研、军事、工业等各个领域。不是吗?看看我们的周围,你就可以轻易地找到它应用的实例:医院中的激光诊断及激光治疗机、商店中的条码识别器、办公室中的激光打印机、把我们与世界各地联结在一起的光纤等等,就是在我们的家中也有它的身影:激光唱机、激光影碟机。 
人类发明了多种多样的激光器。诸如:气体激光器(He-Ne激光器、CO2激光器等)、固态晶体激光器(红宝石激光器、钕玻璃激光器等)、离子激光器(氪离子激光器、氩离子激光器等)、染料激光器(甲酚紫激光器、萤光素激光器等)、超辐射激光器(氮分子激光器等)以及半导体激光器(砷化镓半导体二极管等)等等。 
在世界的许多地方,几乎所有的商品激光器都在制造业中得到越来越广泛的应用。CO2激光器的主要用途就是各类工业激光加工设备,作为固态晶体激光器的Nd: YAG(掺钕钇铝石榴石)激光器的最大应用便是在激光打标领域。  
1.1 激光原理 
 
我们知道,物质是由原子组成的,而原子是由带正电的原子核和带负电的核外电子组成的(见图1.1)。每一个电子都沿着自己特定的轨道绕原子核高速旋转,其旋转半径决定于电子所处的能级。原子吸收能量后,电子的旋转半径会增加,电子的能级就会提高;原子释放能量后,电子的旋转半径会减小,电子的能级就会降低。每个能级对应着一个特定的能量。电子所具有的能量是不连续的,也就是说原子的能级是量子化的。原子只有吸收了两个能级之间差值的能量才会提高一个能级,电子在能级之间的变动现象称为跃迁。同样,当原子跃迁到较低能级时,会释放出两个能级之间差值的能量。原子的最低能级为E0,高的能级依次为E1、E2、E3、……,高的能级称为上能级,低的能级为下能级。处在能级E0的原子称为基态原子,其它能级称为激发态。 
原子可以吸收光子来获得能量,当然这个光子必须具有与原子能级差相
等的能量(例如:E1-E0)原子只能吸收带有几个能量的光子。光子的能量决定于光子本身的波长。所以,原子只能吸收几个特定波长的光子。 
正常情况下,原子吸收能量后会在上能级停留一段时间(这一时间被称为原子的上能级寿命),然后向任意一个方向发射一个光子并返回基态。这一现象称为原子的自发发射。对这一现象,图1.3作了形象的描述。  
若在激发态原子的附近,恰巧有一个光子经过,这个光子又恰好具有原子上下能级之差的能量,那么这个原子就有可能受到外来光子的激励而发出一个光子,原子自身则在发射后返回基态。原子的这种因受到外来激励而发射的情况,称为原子的受激发射(图1.4)。原子受激发射所放出的光子与外来的激励光子在能量、波长、相位等方面完全相同。
以上是单个原子能级的变化情况。 
对于大量原子的情况,在通常条件下,大多数原子总是分布在基态上,其余原子总是从低能级到高能级递减分布。这一分布规律就是通常所说的波尔兹曼分布。在图1.5中,纵坐标表示原子的能级,横坐标表示在各能级上原子的分布数量。如果我们加热这些原子,会使处于上能级的原子数量有所增加。但不管如何加热这些原子,在原子群达到新的热平衡后,上能级的原子数量总是少于下能级的原子数量。若我们想办法强迫下能级的原子跃迁到上能级,而同时保证上能级的原子不很快地发射而返回到下能级,就会人为地造成粒子数反转。这时再用激励光子去激励上能级原子,使其产生受激 发射。在受激发射的同时,要设法使下能级的原子持续地跃迁到上能级,以维持粒子数反转,使受激发射能够持续地进行下去。受激发射所产生的光子都具有相同的波长、方向及相位,所以受激发射的光是很强的。这就是激光。激光这个词是从英文原文“LASER”一词翻译过来的,它的完整的英文原文是“Light Amplification by Stimulated Emission of Radiation” (光辐射受激发射放大),“LASER”是它的缩写。简单地说:激光器的实质是一个光放大器。 在实践中,要想产生激光,就必须满足两个条件:首先找到能够实现粒
第四章  供电及冷却系统 
无论是采用Nd: YAG激光器的YAG系列激光打标机,还是采用CO2激光器的CO2系列激光打标机,供电及冷却系统都是少不了的。 
Nd: YAG激光器所用的泵浦源氪灯,CO2激光器的激光管都需要一个稳定、可靠的直流电源,电源的稳定性直接影响激光输出的稳定性。Nd: YAG激光器所用的电源还必须包括一个能产生高压启动脉冲的点燃电路,以引燃氪灯。 
创想激光生产的激光打标机均采用IGBT开关电源,由于设计合理、制作精良,保证了电源的稳定性和可靠性。 
Nd: YAG激光器所用的泵浦源──大功率氪灯,在发光过程中会产生大量的热;CO2激光器在工作时同样会产生一定的热量(虽然不如Nd: YAG激光器产生的热量多)。若不及时将这些热量去掉,不仅会影响激光器的正常使用和缩短氪灯的使用寿命,更为严重的是将会发生炸腔或损坏CO2激光管的恶性事故,使昂贵的Nd: YAG晶体棒及镀金腔或CO2激光器报废。 
施加于声光Q开关上的射频信号,被压电晶体吸收后,一部分能量转变成超声波,还有一部分变成热;尽管Q开关中的熔石英晶体对激光是透明的,但还会吸收一部分光能,这些能量转变为热。这些热量会烧坏压电换能器的电极,烧坏压电换能器,甚至会烧坏熔石英晶体。 
去除热量的最有效的方法是加装一套水循环装置,靠水的循环来带走热量。对于Nd: YAG激光器,由于氪灯表面的温度很高,必须考虑不使氪灯表面结垢;冷却水直接流过氪灯表面,水必须有很高的透明度;氪灯的电极上加有高压,水必须有较高的电阻率。所以必须采用去离子水。对于CO2激光器,冷却水采用普通水就可以了。为了节省宝贵的水资源,冷却水(不管是去离子水还是普通水)应该循环使用,一般的做法是采用一套二次冷却装置,以带走冷却水所带出的热量,一般是采用外接普通水源的办法。由于采用CO2激光器的激光打标机所产生的热量较小,二次冷却多采用风冷却的方式。  
     第五章  光学系统 
 
没有光学系统,激光打标机是无法正常工作的。针对激光打标机工作方式的不同,光学系统也是各式各样的,当他们都包括扩束镜(使激光器发出的激光束直径变大并缩小激光束的发散角)、光学聚焦透镜(使作用在工件表面的激光光斑直径尽可能变小)和反射镜(用以改变激光束的方向)。 
一个70W的连续激光器所发出的光能与一个70W的普通灯泡所发出的光能是差不多的。普通灯泡是被设计为用来照明的,它发出的光线是向四面八方照射的,与灯泡不同的是激光器发出的光线集中在一个很小的范围。所以激光的能量密度(单位面积上的能量)远远大于灯泡的能量密度,实际的打标效果决定于工件表面所承受的能量密度,而不是激光的功率。为了能够很好地进行激光打标,必须进一步提高激光的能量密度。这有两个方法:一个是提高激光器的激光输出功率,一般地说这是困难或得不偿失的;还有一个方法是将激光器发出的激光束进一步变细,这需要一套光学系统。 
使激光束变细是很简单的,只需有一个聚焦透镜将激光束聚焦到一个很小的点。激光器发出的激光并不是理想的平行光,它有一个很小的发散角,这一很小的发散角会影响到聚焦透镜的聚焦效果。所以在聚焦透镜之前要有一个扩束镜用以压低光束的发散角。扩束镜除了可以压低光束的发散角外,还可以扩大激光输出光束的直径。我们知道,聚焦后光斑的大小取决于入射光束直径和聚焦透镜的焦距:入射光束直径越大,聚焦后光斑直径越小。入射光束直径的增大,还可以降低激光光路中使激光光束改变方向的反射镜上的激光能量密度,保证了反射镜在长时间工作时不被激光束烧坏。 
按照聚焦透镜在光路中相对于反射镜所处的位置,可以分为前聚焦和后聚焦两种方式。 
下面我们以振镜扫描式激光打标机为例来介绍激光打标机的光学系统。 
5.1 前聚焦方式 
X-振镜Y-振镜
反射镜反射镜激光束
扩束镜激光器
聚焦镜
 前聚焦方式是因聚焦透镜比反射镜更靠近激光器(处在反射镜的前面)而得名。聚焦透镜安装在扩束镜和振镜扫描器之间(见图5.1),它的最大优点是价格较为低廉、且可获得较大的打标范围。 
这一方式的主要缺点是:光斑直径较大,这是由于前聚焦方式选用的聚焦透镜的焦距较长,而聚焦光斑的直径与聚焦镜的焦距成正比,这是为了容纳振镜扫描器,聚焦透镜不得不采用较大的焦距,由此导致打标的能量密度降低。另外,前聚焦方式只能选用普通聚焦透镜,这种透镜的焦点位置是镜头后方的一个圆弧面,而多数情况下工件表面是一个平面,当光束由打标区域的中心移至边缘时,焦点将位于工件平面的上面,工件表面上光斑直径和能量密度将动态地发生变化。另外,当反射镜偏转同一角度时,打标位置分别处于视场中央和边缘时,激光光斑的位置变化是不一致的。以上这些不足都将影响最终的打标的效果。 
对于采用CO2激光器的激光打标机,由于激光波长较长,聚焦透镜的焦深(当工件平面在镜头焦平面前后移动,肉眼难以辨别打标效果差别的最大范围)较大,为了得到较大的打标工作范围,多采用前聚焦方式。 
  5.2 后聚焦方式 
 顾名思义,与前聚焦方式不同的是,后聚焦方式将聚焦透镜安装在振镜扫描器的后面(见图5.2)。这就避免了前聚焦方式的缺点。它采用的聚焦透镜是专门设计的F-θ平场透镜,不管光束如何移动,它的焦点位置始终保持在
一个平面上,保证了在打标区域内光斑大小及能量密度的一致,并且当反射 
X-振镜Y-振镜
反射镜反射镜激光束
扩束镜激光器F-0透镜
 镜偏转单位角度时,对应的焦平面上激光光斑的几何位移是处处一致的。这些都保障了打标的质量的提高。另外,这种方式使更换聚焦透镜变得很简单,可以根据打标范围的大小和具体要求随时更换聚焦透镜。 
它的缺点是价格较高,打标范围相对较小(但可以通过更换透镜来增大打标范围)。 
由于这种方式可以获得高质量的打标效果,大多数采用Nd: YAG激光器的振镜扫描式激光打标机均采用这种聚焦方式。  
 
     Copyright © 深圳市创想激光科技有限公司 保留所有权利    Powered By 博盈网络营销